Knocking Down TMPRSS2-ERG Fusion Oncogene by siRNA Could be an Alternative Treatment to Flutamide
نویسندگان
چکیده
Our purpose was to develop a new pharmacological approach for the treatment of prostate cancer (PCa), the most common neoplasia in men. Recently, we developed siRNA against the fusion oncogene TMPRSS2-ERG found in 50% of patients and showed an antitumoral activity in animal model. Herein, we want to compare or combine the developed siRNA to flutamide (FLU), one of the gold-standard treatment of PCa. Therefore, concomitant or subsequent association of FLU to siRNA TMPRSS2-ERG was performed in VCaP cells and in SCID mice bearing xenografted VCaP tumors. ERG, androgen receptor, cleaved-caspase-3 as well as phase 1 and 2 drug-metabolizing enzymes were investigated within tumors. We observed similar results in terms of TMPRSS2-ERG knock-down and cell viability impairment for all distinct schedules of administration. The association of siRNA TMPRSS2-ERG-squalene nanoparticles with flutamide displayed similar tumor growth inhibition as mice treated with siRNA TMPRSS2-ERG-squalene nanoparticles alone and was paralleled with modification of expression of ERG, androgen receptor, and cleaved-caspase-3. Phase 1 and 2 enzymes were essentially affected by FLU and reverted when combined with squalenoylated siRNA. In conclusion, these results confirm the therapeutic effectiveness of squalenoyl siRNA nanomedicine for PCa based on siRNA TMPRSS2-ERG.
منابع مشابه
Role of TMPRSS2-ERG Gene Fusion in Negative Regulation of PSMA Expression
Prostate specific membrane antigen (PSMA) is overexpressed in prostatic adenocarcinoma (CaP), and its expression is negatively regulated by androgen stimulation. However, it is still unclear which factors are involved in this downregulation. TMPRSS2-ERG fusion is the most common known gene rearrangement in prostate carcinoma. Androgen stimulation can increase expression of the TMPRSS2-ERG fusio...
متن کاملAntineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer
TMPRSS2-ERG junction oncogene is present in more than 50% of patients with prostate cancer and its expression is frequently associated with poor prognosis. Our aim is to achieve gene knockdown by siRNA TMPRSS2-ERG and then to assess the biological consequences of this inhibition. First, we designed siRNAs against the two TMPRSS2-ERG fusion variants (III and IV), most frequently identified in pa...
متن کاملSignificance of the TMPRSS2:ERG gene fusion in prostate cancer
The transmembrane protease serine 2:v‑ets erythroblastosis virus E26 oncogene homolog (TMPRSS2:ERG) gene fusion is common in prostate cancer, while its functional role is not fully understood. The present study aimed to investigate the significance of the TMPRSS2:ERG gene fusion in human prostate cancers using bioinformatics tools. Comprehensive alteration analysis of TMPRSS2 and ERG in 148 dif...
متن کامل5′ UTR Control of Native ERG and of Tmprss2:ERG Variants Activity in Prostate Cancer
ERG, a member of the ETS transcription factor family, is frequently overexpressed in prostate cancer as a result of its fusion to the androgen-responsive Tmprss2 gene. Different genomic rearrangements and alternative splicing events around the junction region lead to multiple combination of Tmprss2:ERG fusion transcripts that correlate with different tumor aggressiveness, but their specific fun...
متن کاملThe TMPRSS2-ERG Gene Fusion Blocks XRCC4-Mediated Nonhomologous End-Joining Repair and Radiosensitizes Prostate Cancer Cells to PARP Inhibition.
Exposure to genotoxic agents, such as ionizing radiation (IR), produces DNA damage, leading to DNA double-strand breaks (DSB); IR toxicity is augmented when the DNA repair is impaired. We reported that radiosensitization by a PARP inhibitor (PARPi) was highly prominent in prostate cancer cells expressing the TMPRSS2-ERG gene fusion protein. Here, we show that TMPRSS2-ERG blocks nonhomologous en...
متن کامل